MPEG Meeting Report – Bitmovin https://bitmovin.com Bitmovin provides adaptive streaming infrastructure for video publishers and integrators. Fastest cloud encoding and HTML5 Player. Play Video Anywhere. Sun, 07 Jan 2024 21:01:49 +0000 en-GB hourly 1 https://bitmovin.com/wp-content/uploads/2023/11/bitmovin_favicon.svg MPEG Meeting Report – Bitmovin https://bitmovin.com 32 32 144th MPEG Meeting Takeaways: Understanding Quality Impacts of Learning-based Codecs and Enhancing Green Metadata https://bitmovin.com/blog/144th-mpeg-meeting-takeaways/ https://bitmovin.com/blog/144th-mpeg-meeting-takeaways/#respond Sun, 07 Jan 2024 21:01:46 +0000 https://bitmovin.com/?p=274472 Preface Bitmovin has been “Shaping the Future of Video” for over 10 years now and in addition to our own innovations, we’ve been actively taking part in standardization activities to improve the quality of video technologies for the wider industry. I have been a member and attendant of the Moving Pictures Experts Group for 15+...

The post 144th MPEG Meeting Takeaways: Understanding Quality Impacts of Learning-based Codecs and Enhancing Green Metadata appeared first on Bitmovin.

]]>

Table of Contents

Preface

Bitmovin has been “Shaping the Future of Video” for over 10 years now and in addition to our own innovations, we’ve been actively taking part in standardization activities to improve the quality of video technologies for the wider industry. I have been a member and attendant of the Moving Pictures Experts Group for 15+ years and have been documenting the progress since early 2010. Recently, we’ve been working on several new initiatives including the use of learning-based codecs and enhancing support for more energy-efficient media consumption.

The 144th MPEG meeting highlights

The 144th MPEG meeting was held in Hannover, Germany! For those interested, the press release with all the details is available. It’s always great to see and hear about progress being made in person.

Attendees of the 144th MPEG meeting in Hannover, Germany.
Attendees of the 144th MPEG meeting in Hannover, Germany.

The main outcome of this meeting is as follows:

  • MPEG issues Call for Learning-Based Video Codecs for Study of Quality Assessment
  • MPEG evaluates Call for Proposals on Feature Compression for Video Coding for Machines
  • MPEG progresses ISOBMFF-related Standards for the Carriage of Network Abstraction Layer Video Data
  • MPEG enhances the Support of Energy-Efficient Media Consumption
  • MPEG ratifies the Support of Temporal Scalability for Geometry-based Point Cloud Compression
  • MPEG reaches the First Milestone for the Interchange of 3D Graphics Formats
  • MPEG announces Completion of Coding of Genomic Annotations

This post will focus on MPEG Systems-related standards and visual quality assessment. As usual, the column will end with an update on MPEG-DASH.

Visual Quality Assessment

MPEG does not create standards in the visual quality assessment domain. However, it conducts visual quality assessments for its standards during various stages of the standardization process. For instance, it evaluates responses to call for proposals, conducts verification tests of its final standards, and so on. 

MPEG Visual Quality Assessment (AG 5) issued an open call to study quality assessment for learning-based video codecs. AG 5 has been conducting subjective quality evaluations for coded video content and studying their correlation with objective quality metrics. Most of these studies have focused on the High Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC) standards. To facilitate the study of visual quality, MPEG maintains the Compressed Video for the study of Quality Metrics (CVQM) dataset.

With the recent advancements in learning-based video compression algorithms, MPEG is now studying compression using these codecs. It is expected that reconstructed videos compressed using learning-based codecs will have different types of distortion compared to those induced by traditional block-based motion-compensated video coding designs. To gain a deeper understanding of these distortions and their impact on visual quality, MPEG has issued a public call related to learning-based video codecs. MPEG is open to inputs in response to the call and will invite responses that meet the call’s requirements to submit compressed bitstreams for further study of their subjective quality and potential inclusion into the CVQM dataset.

Considering the rapid advancements in the development of learning-based video compression algorithms, MPEG will keep this call open and anticipates future updates to the call.

Interested parties are kindly requested to contact the MPEG AG 5 Convenor Mathias Wien (wien@lfb.rwth- aachen.de) and submit responses for review at the 145th MPEG meeting in January 2024. Further details are given in the call, issued as AG 5 document N 104 and available from the mpeg.org website.

Learning-based data compression (e.g., for image, audio, video content) is a hot research topic. Research on this topic relies on datasets offering a set of common test sequences, sometimes also common test conditions, that are publicly available and allow for comparison across different schemes. MPEG’s Compressed Video for the study of Quality Metrics (CVQM) dataset is such a dataset, available here, and ready to be used also by researchers and scientists outside of MPEG. The call mentioned above is open for everyone inside/outside of MPEG and allows researchers to participate in international standards efforts (note: to attend meetings, one must become a delegate of a national body).

Bitmovin and the ATHENA research lab have been working together on ML-based enhancements to boost visual quality and improve QoE. You can read more about our published research in this blog post

- Bitmovin

At the 144th MPEG meeting, MPEG Systems (WG 3) produced three news-worthy items as follows:

  • Progression of ISOBMFF-related standards for the carriage of Network Abstraction Layer (NAL) video data.
  • Enhancement of the support of energy-efficient media consumption.
  • Support of temporal scalability for geometry-based Point Cloud Compression (PPC).

ISO/IEC 14496-15, a part of the family of ISOBMFF-related standards, defines the carriage of Network Abstraction Layer (NAL) unit structured video data such as Advanced Video Coding (AVC), High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), Essential Video Coding (EVC), and Low Complexity Enhancement Video Coding (LCEVC). This standard has been further improved with the approval of the Final Draft Amendment (FDAM), which adds support for enhanced features such as Picture-in-Picture (PiP) use cases enabled by VVC.

In addition to the improvements made to ISO/IEC 14496-15, separately developed amendments have been consolidated in the 7th edition of the standard. This edition has been promoted to Final Draft International Standard (FDIS), marking the final milestone of the formal standard development.

Another important standard in development is the 2nd edition of ISO/IEC14496-32 (file format reference software and conformance). This standard, currently at the Committee Draft (CD) stage of development, is planned to be completed and reach the status of Final Draft International Standard (FDIS) by the beginning of 2025. This standard will be essential for industry professionals who require a reliable and standardized method of verifying the conformance of their implementation.

MPEG Systems (WG 3) also promoted ISO/IEC 23001-11 (energy-efficient media consumption (green metadata)) Amendment 1 to Final Draft Amendment (FDAM). This amendment introduces energy-efficient media consumption (green metadata) for Essential Video Coding (EVC) and defines metadata that enables a reduction in decoder power consumption. At the same time, ISO/IEC 23001-11 Amendment 2 has been promoted to the Committee Draft Amendment (CDAM) stage of development. This amendment introduces a novel way to carry metadata about display power reduction encoded as a video elementary stream interleaved with the video it describes. The amendment is expected to be completed and reach the status of Final Draft Amendment (FDAM) by the beginning of 2025.

Finally, MPEG Systems (WG 3) promoted ISO/IEC 23090-18 (carriage of geometry-based point cloud compression data) Amendment 1 to Final Draft Amendment (FDAM). This amendment enables the compression of a single elementary stream of point cloud data using ISO/IEC 23090-9 (geometry-based point cloud compression) and storing it in more than one track of ISO Base Media File Format (ISOBMFF)-based files. This enables support for applications that require multiple frame rates within a single file and introduces a track grouping mechanism to indicate multiple tracks carrying a specific temporal layer of a single elementary stream separately.

MPEG Systems usually provides standards on top of existing compression standards, enabling efficient storage and delivery of media data (among others). Researchers may use these standards (including reference software and conformance bitstreams) to conduct research in the general area of multimedia systems (cf. ACM MMSys) or, specifically on green multimedia systems (cf. ACM GMSys).

Enhancements to green metadata are welcome and necessary additions to the toolkit for everyone working on reducing the carbon footprint of video streaming workflows. Bitmovin and the GAIA project have been conducting focused research in this area for over a year now and through testing, benchmarking and developing new methods, hope to significantly improve our industry’s environmental sustainability. You can read more about our progress in this report

MPEG-DASH Updates

The current status of MPEG-DASH is shown in the figure below with only minor updates compared to the last meeting.

- Bitmovin
MPEG-DASH Status, October 2023.

In particular, the 6th edition of MPEG-DASH is scheduled for 2024 but may not include all amendments under development. An overview of existing amendments can be found in the blog post from the last meeting. Current amendments have been (slightly) updated and progressed toward completion in the upcoming meetings. The signaling of haptics in DASH has been discussed and accepted for inclusion in the Technologies under Consideration (TuC) document. The TuC document comprises candidate technologies for possible future amendments to the MPEG-DASH standard and is publicly available here.

MPEG-DASH has been heavily researched in the multimedia systems, quality, and communications research communities. Adding haptics to MPEG-DASH would provide another dimension worth considering within research, including, but not limited to, performance aspects and Quality of Experience (QoE).


The 145th MPEG meeting will be online from January 22-26, 2024. Click here for more information about MPEG meetings and their developments.


Want to learn more about the latest research from the ATHENA lab and its potential applications? check out this post summarizing the projects from the first cohort of finishing PhD candidates.


Notes and highlights from previous MPEG meetings can be found here.

The post 144th MPEG Meeting Takeaways: Understanding Quality Impacts of Learning-based Codecs and Enhancing Green Metadata appeared first on Bitmovin.

]]>
https://bitmovin.com/blog/144th-mpeg-meeting-takeaways/feed/ 0
142nd MPEG Meeting Takeaways: MPEG issues Call for Proposals for Feature Coding for Machines https://bitmovin.com/blog/142nd-mpeg-meeting-takeaways/ https://bitmovin.com/blog/142nd-mpeg-meeting-takeaways/#comments Wed, 24 May 2023 14:49:18 +0000 https://bitmovin.com/?p=261012 Preface Bitmovin is a proud member and contributor to several organizations working to shape the future of video, none for longer than the Moving Pictures Expert Group (MPEG), where I along with a few senior developers at Bitmovin are active members. Personally, I have been a member and attendant of MPEG for 20+ years and...

The post 142nd MPEG Meeting Takeaways: MPEG issues Call for Proposals for Feature Coding for Machines appeared first on Bitmovin.

]]>
Preface

Bitmovin is a proud member and contributor to several organizations working to shape the future of video, none for longer than the Moving Pictures Expert Group (MPEG), where I along with a few senior developers at Bitmovin are active members. Personally, I have been a member and attendant of MPEG for 20+ years and have been documenting the progress since early 2010. Today, we’re working hard to further improve the capabilities and efficiency of the industry’s newest standards, while exploring the potential applications of machine learning and neural networks.

The 142nd MPEG Meeting – MPEG issues Call for Proposals for Feature Coding for Machines

The official press release of the 142nd MPEG meeting can be found here and comprises the following items:

  • MPEG issues Call for Proposals for Feature Coding for Machines
  • MPEG finalizes the 9th Edition of MPEG-2 Systems
  • MPEG reaches the First Milestone for Storage and Delivery of Haptics Data
  • MPEG completes 2nd Edition of Neural Network Coding (NNC)
  • MPEG completes Verification Test Report and Conformance and Reference Software for MPEG Immersive Video
  • MPEG finalizes work on metadata-based MPEG-D DRC Loudness Leveling

In this report, I’d like to focus on Feature Coding for Machines, MPEG-2 Systems, Haptics, Neural Network Coding (NNC), MPEG Immersive Video, and a brief update about DASH (as usual).

Feature Coding for Machines

At the 142nd MPEG meeting, MPEG Technical Requirements (WG 2) issued a Call for Proposals (CfP) for technologies and solutions enabling efficient feature compression for video coding for machine vision tasks. This work on “Feature Coding for Video Coding for Machines (FCVCM)” aims at compressing intermediate features within neural networks for machine tasks. As applications for neural networks become more prevalent and the neural networks increase in complexity, use cases such as computational offload become more relevant to facilitate widespread deployment of applications utilizing such networks. Initially as part of the “Video Coding for Machines” activity, over the last four years, MPEG has investigated potential technologies for efficient compression of feature data encountered within neural networks. This activity has resulted in establishing a set of ‘feature anchors’ that demonstrate the achievable performance for compressing feature data using state-of-the-art standardized technology. These feature anchors include tasks performed on four datasets.

9th Edition of MPEG-2 Systems

MPEG-2 Systems was first standardized in 1994, defining two container formats: program stream (e.g., used for DVDs) and transport stream. The latter, also known as MPEG-2 Transport Stream (M2TS), is used for broadcast and internet TV applications and services. MPEG-2 Systems has been awarded a Technology and Engineering Emmy® in 2013 and at the 142nd MPEG meeting, MPEG Systems (WG 3) ratified the 9th edition of ISO/IEC 13818-1 MPEG-2 Systems. The new edition includes support for Low Complexity Enhancement Video Coding (LCEVC), the youngest in the MPEG family of video coding standards on top of more than 50 media stream types, including, but not limited to, 3D Audio and Versatile Video Coding (VVC). The new edition also supports new options for signaling different kinds of media, which can aid the selection of the best audio or other media tracks for specific purposes or user preferences. As an example, it can indicate that a media track provides information about a current emergency.

Storage and Delivery of Haptics Data

At the 142nd MPEG meeting, MPEG Systems (WG 3) reached the first milestone for ISO/IEC 23090-32 entitled “Carriage of haptics data” by promoting the text to Committee Draft (CD) status. This specification enables the storage and delivery of haptics data (defined by ISO/IEC 23090-31) in the ISO Base Media File Format (ISOBMFF; ISO/IEC 14496-12). Considering the nature of haptics data composed of spatial and temporal components, a data unit with various spatial or temporal data packets is used as a basic entity like an access unit of audio-visual media. Additionally, an explicit indication of a silent period considering the sparse nature of haptics data, has been introduced in this draft. The standard is planned to be completed, i.e., to reach the status of Final Draft International Standard (FDIS), by the end of 2024.

Neural Network Coding (NNC)

Many applications of artificial neural networks for multimedia analysis and processing (e.g., visual and acoustic classification, extraction of multimedia descriptors, or image and video coding) utilize edge-based content processing or federated training. The trained neural networks for these applications contain many parameters (weights), resulting in a considerable size. Therefore, the MPEG standard for the compressed representation of neural networks for multimedia content description and analysis (NNC, ISO/IEC 15938-17, published in 2022) was developed, which provides a broad set of technologies for parameter reduction and quantization to compress entire neural networks efficiently.

Recently, an increasing number of artificial intelligence applications, such as edge-based content processing, content-adaptive video post-processing filters, or federated training, need to exchange updates of neural networks (e.g., after training on additional data or fine-tuning to specific content). Such updates include changes of the neural network parameters but may also involve structural changes in the neural network (e.g., when extending a classification method with a new class). In scenarios like federated training, these updates must be exchanged frequently, such that much more bandwidth over time is required, e.g., in contrast to the initial deployment of trained neural networks.

The second edition of NNC addresses these applications through efficient representation and coding of incremental updates and extending the set of compression tools that can be applied to both entire neural networks and updates. Trained models can be compressed to at least 10-20% and, for several architectures, even below 3% of their original size without performance loss. Higher compression rates are possible at moderate performance degradation. In a distributed training scenario, a model update after a training iteration can be represented at 1% or less of the base model size on average without sacrificing the classification performance of the neural network. NNC also provides synchronization mechanisms, particularly for distributed artificial intelligence scenarios, e.g., if clients in a federated learning environment drop out and later rejoin.

Verification Test Report and Conformance and Reference Software for MPEG Immersive Video

At the 142nd MPEG meeting, MPEG Video Coding (WG 4) issued the verification test report of ISO/IEC 23090-12 MPEG immersive video (MIV) and completed the development of the conformance and reference software for MIV (ISO/IEC 23090-23), promoting it to the Final Draft International Standard (FDIS) stage.

MIV was developed to support the compression of immersive video content, in which multiple real or virtual cameras capture a real or virtual 3D scene. The standard enables the storage and distribution of immersive video content over existing and future networks for playback with 6 degrees of freedom (6DoF) of view position and orientation. MIV is a flexible standard for multi-view video plus depth (MVD) and multi-planar video (MPI) that leverages strong hardware support for commonly used video formats to compress volumetric video.

ISO/IEC 23090-23 specifies how to conduct conformance tests and provides reference encoder and decoder software for MIV. This draft includes 23 verified and validated conformance bitstreams spanning all profiles and encoding and decoding reference software based on version 15.1.1 of the test model for MPEG immersive video (TMIV). The test model, objective metrics, and other tools are publicly available at https://gitlab.com/mpeg-i-visual.

The latest MPEG-DASH Update

Finally, I’d like to provide a quick update regarding MPEG-DASH, which has a new part, namely redundant encoding and packaging for segmented live media (REAP; ISO/IEC 23009-9). The following figure provides the reference workflow for redundant encoding and packaging of live segmented media.

- Bitmovin

The reference workflow comprises (i) Ingest Media Presentation Description (I-MPD), (ii) Distribution Media Presentation Description (D-MPD), and (iii) Storage Media Presentation Description (S-MPD), among others; each defining constraints on the MPD and tracks of ISO base media file format (ISOBMFF).

Additionally, the MPEG-DASH Break out Group discussed various technologies under consideration, such as (a) combining HTTP GET requests, (b) signaling common media client data (CMCD) and common media server data (CMSD) in a MPEG-DASH MPD, (c) image and video overlays in DASH, and (d) updates on lower latency.

An updated overview of DASH standards/features can be found in the Figure below.

- Bitmovin
MPEG-DASH Status – April 2023

The next meeting will be held in Geneva, Switzerland, from July 17-21, 2023. Further details can be found here.

Click here for more information about MPEG meetings and their developments.

Have any thoughts or questions about neural networks or the other updates described above? Check out Bitmovin’s Video Developer Community and join the conversation!

 Looking for more info on video streaming formats and codecs? Here are some useful resources:

The post 142nd MPEG Meeting Takeaways: MPEG issues Call for Proposals for Feature Coding for Machines appeared first on Bitmovin.

]]>
https://bitmovin.com/blog/142nd-mpeg-meeting-takeaways/feed/ 1
MPEG 127 Meeting Report https://bitmovin.com/blog/mpeg-127-meeting-report/ Tue, 23 Jul 2019 21:53:43 +0000 https://bitmovin.com/?p=52577 The 127th MPEG meeting concluded on July 12, 2019 in Gothenburg, Sweden with the following topics: Versatile Video Coding (VVC) enters formal approval stage, experts predict 35-60% improvement over HEVC Essential Video Coding (EVC) promoted to Committee Draft Common Media Application Format (CMAF) 2nd edition promoted to Final Draft International Standard Dynamic Adaptive Streaming over...

The post MPEG 127 Meeting Report appeared first on Bitmovin.

]]>
MPEG Meeting Report
The 127th MPEG meeting concluded on July 12, 2019 in Gothenburg, Sweden with the following topics:

  • Versatile Video Coding (VVC) enters formal approval stage, experts predict 35-60% improvement over HEVC
  • Essential Video Coding (EVC) promoted to Committee Draft
  • Common Media Application Format (CMAF) 2nd edition promoted to Final Draft International Standard
  • Dynamic Adaptive Streaming over HTTP (DASH) 4th edition promoted to Final Draft International Standard
  • Carriage of Point Cloud Data Progresses to Committee Draft
  • JPEG XS carriage in MPEG-2 TS promoted to Final Draft Amendment of ISO/IEC 13818-1 7th edition
  • Genomic information representation – WG11 issues a joint call for proposals on genomic annotations in conjunction with ISO TC 276/WG 5
  • ISO/IEC 23005 (MPEG-V) 4th Edition – WG11 promotes the Fourth edition of two parts of “Media Context and Control” to the Final Draft International Standard (FDIS) stage

The corresponding press release of the 127th MPEG meeting can be found here: https://mpeg.chiariglione.org/meetings/127. In this report we will focus on video coding aspects (VVC and EVC), adaptive streaming stuff (CMAF and DASH), and immersive media applications (PCC).

- Bitmovin
Over 600 delegates attended the 127th MPEG meeting in Gothenburg, Sweden.

Versatile Video Coding (VVC)

The Moving Picture Experts Group (MPEG) is pleased to announce that Versatile Video Coding (VVC) progresses to Committee Draft, experts predict 35-60% improvement over HEVC
The development of the next major generation of video coding standard has achieved excellent progress, such that MPEG has approved the Committee Draft (CD, i.e., the text for formal balloting in the ISO/IEC approval process).
The new VVC standard will be applicable to a very broad range of applications and it will also provide additional functionalities. VVC will provide a substantial improvement in coding efficiency relative to existing standards. The improvement in coding efficiency is expected to be quite substantial – e.g., in the range of 35–60% bit rate reduction relative to HEVC although it has not yet been formally measured. Relative to HEVC means for equivalent subjective video quality at picture resolutions such as 1080p HD or 4K or 8K UHD, either for standard dynamic range video or high dynamic range and wide color gamut content for levels of quality appropriate for use in consumer distribution services. The focus during the development of the standard has primarily been on 10-bit 4:2:0 content, and 4:4:4 chroma format will also be supported.
The VVC standard is being developed in the Joint Video Experts Team (JVET), a group established jointly by MPEG and the Video Coding Experts Group (VCEG) of ITU-T Study Group 16. In addition to a text specification, the project also includes the development of reference software, a conformance testing suite, and a new standard ISO/IEC 23002-7 specifying supplemental enhancement information messages for coded video bitstreams. The approval process for ISO/IEC 23002-7 has also begun, with the issuance of a CD consideration ballot.
Bitmovin welcomes these efforts and is working on effective integration of new codec including but not limited to VVC into its product portfolio and also appreciates efforts by the Media Coding Industry Forum (MC-IF) for working on appropriate licencing terms.

Essential Video Coding (EVC)

MPEG-5 Essential Video Coding (EVC) promoted to Committee Draft
Interestingly, at the same meeting as VVC, MPEG promoted MPEG-5 Essential Video Coding (EVC) to Committee Draft (CD). The goal of MPEG-5 EVC is to provide a standardized video coding solution to address business needs in some use cases, such as video streaming, where existing ISO video coding standards have not been as widely adopted as might be expected from their purely technical characteristics.
The MPEG-5 EVC standards includes a baseline profile that contains only technologies that are over 20 years old or are otherwise expected to be royalty-free. Additionally, a main profile adds a small number of additional tools, each providing significant performance gain. All main profile tools are capable of being individually switched off or individually switched over to a corresponding baseline tool. Organizations making proposals for the main profile have agreed to publish applicable licensing terms within two years of FDIS stage, either individually or as part of a patent pool.
Bitmovin acknowledges all efforts enabling efficient adoption of video codecs for streaming applications and services. One open issue is whether the parallel development of both VVC and EVC will have any side effects on these standards or existing standards, specifically those having “not been as widely adopted as might be expected from their purely technical characteristics”.

Common Media Application Format (CMAF)

MPEG ratified the 2nd edition of the Common Media Application Format (CMAF)
The Common Media Application Format (CMAF) enables efficient encoding, storage, and delivery of digital media content (incl. audio, video, subtitles among others), which is key to scaling operations to support the rapid growth of video streaming over the internet. The CMAF standard is the result of widespread industry adoption of an application of MPEG technologies for adaptive video streaming over the Internet, and widespread industry participation in the MPEG process to standardize best practices within CMAF.
The 2nd edition of CMAF adds support for a number of specifications that were a result of significant industry interest. Those include

  • Advanced Audio Coding (AAC) multi-channel;
  • MPEG-H 3D Audio;
  • MPEG-D Unified Speech and Audio Coding (USAC);
  • Scalable High Efficiency Video Coding (SHVC);
  • IMSC 1.1 (Timed Text Markup Language Profiles for Internet Media Subtitles and Captions); and
  • additional HEVC video CMAF profiles and brands.

This edition also introduces CMAF supplemental data handling as well as new structural brands for CMAF that reflects the common practice of the significant deployment of CMAF in industry. Companies adopting CMAF technology will find the specifications introduced in the 2nd Edition particularly useful for further adoption and proliferation of CMAF in the market.
Bitmovin supports CMAF since the beginning and recently worked on low-latency for CMAF resulting in winning the DASH-IF Excellence in DASH award for bandwidth prediction in low-latency chunked streaming, in collaboration with Alpen-Adria-Universität Klagenfurt, National University of Singapore, and Ozyegin University & Networked Media [link]. Thus, Bitmovin is committed working towards integration of recent advances of the CMAF specification in order to address raising business needs of its customers.

Dynamic Adaptive Streaming over HTTP (DASH)

MPEG approves the 4th edition of Dynamic Adaptive Streaming over HTTP (DASH)
The 4th edition of MPEG-DASH comprises the following features:

  • service description that is intended by the service provider on how the service is expected to be consumed;
  • a method to indicate the times corresponding to the production of associated media;
  • a mechanism to signal DASH profiles and features, employed codec and format profiles; and
  • supported protection schemes present in the Media Presentation Description (MPD).

It is expected that this edition will be published later this year. 
Bitmovin’s contribution to MPEG-DASH is indisputable and can be found in the traces of its history resulting in the research and development of the current products encoding, player, and analytics. The reason why the 4th edition has been produced relatively quick after finalizing the 3rd edition is due to the ISO approval/publication process and for details you have to invite me for a drink ;).

Carriage of Point Cloud Data

MPEG progresses the Carriage of Point Cloud Data to Committee Draft
At its 127th meeting, MPEG has promoted the carriage of point cloud data to the Committee Draft stage, the first milestone of ISO standard development process. This standard is the first one introducing the support of volumetric media in the industry-famous ISO base media file format family of standards.
This standard supports the carriage of point cloud data comprising individually encoded video bitstreams within multiple file format tracks in order to support the intrinsic nature of the video-based point cloud compression (V-PCC). Additionally, it also allows the carriage of point cloud data in one file format track for applications requiring multiplexed content (i.e., the video bitstream of multiple components is interleaved into one bitstream).
This standard is expected to support efficient access and delivery of some portions of a point cloud object considering that in many cases that entire point cloud object may not be visible by the user depending on the viewing direction or location of the point cloud object relative to other objects. It is currently expected that the standard will reach its final milestone by the end of 2020.
Bitmovin is actively researching novel means enabling immersive media access — in collaboration with Alpen-Adria-Universität Klagenfurt — resulting in first publications in renowned conferences such as “Dynamic Adaptive Point Cloud Streaming” (in ACM Packet Video 2018) and “Towards 6DoF HTTP Adaptive Streaming Through Point Cloud Compression” (accepted for publication in ACM Multimedia 2019).
Finally, the unofficial highlight of the 127th MPEG meeting we certainly found while scanning the scene in Gothenburg on Tuesday night…
- Bitmovin

The post MPEG 127 Meeting Report appeared first on Bitmovin.

]]>
MPEG 126 Meeting Report https://bitmovin.com/blog/mpeg-126-meeting-report/ Tue, 09 Apr 2019 20:06:40 +0000 https://bitmovin.com/?p=34099 The 126th MPEG meeting concluded on March 29, 2019 in Geneva, Switzerland with the following topics: Three Degrees of Freedom Plus (3DoF+) – MPEG evaluates responses to the Call for Proposal and starts a new project on Metadata for Immersive Video Neural Network Compression for Multimedia Applications – MPEG evaluates responses to the Call for...

The post MPEG 126 Meeting Report appeared first on Bitmovin.

]]>
- Bitmovin
The 126th MPEG meeting concluded on March 29, 2019 in Geneva, Switzerland with the following topics:

  • Three Degrees of Freedom Plus (3DoF+) – MPEG evaluates responses to the Call for Proposal and starts a new project on Metadata for Immersive Video
  • Neural Network Compression for Multimedia Applications – MPEG evaluates responses to the Call for Proposal and kicks off its technical work
  • Low Complexity Enhancement Video Coding – MPEG evaluates responses to the Call for Proposal and selects a Test Model for further development
  • Point Cloud Compression – MPEG promotes its Geometry-based Point Cloud Compression (G-PCC) technology to the Committee Draft (CD) stage
  • MPEG Media Transport (MMT) – MPEG approves 3rd Edition of Final Draft International Standard
  • MPEG-G – MPEG-G standards reach Draft International Standard for Application Program Interfaces (APIs) and Metadata technologies

The corresponding press release of the 126th MPEG meeting can be found here: https://mpeg.chiariglione.org/meetings/126

Three Degrees of Freedom Plus (3DoF+)

MPEG evaluates responses to the Call for Proposal and starts a new project on Metadata for Immersive Video

MPEG’s support for 360-degree video — also referred to as omnidirectional video — is achieved using the Omnidirectional Media Format (OMAF) and Supplemental Enhancement Information (SEI) messages for High Efficiency Video Coding (HEVC). It basically enables the utilization of the tiling feature of HEVC to implement 3DoF applications and services, e.g., users consuming 360-degree content using a head mounted display (HMD). However, rendering flat 360-degree video may generate visual discomfort when objects close to the viewer are rendered. The interactive parallax feature of Three Degrees of Freedom Plus (3DoF+) will provide viewers with visual content that more closely mimics natural vision, but within a limited range of viewer motion.
At its 126th meeting, MPEG received five responses to the Call for Proposals (CfP) on 3DoF+ Visual. Subjective evaluations showed that adding the interactive motion parallax to 360-degree video will be possible. Based on the subjective and objective evaluation, a new project was launched, which will be named Metadata for Immersive Video. A first version of a Working Draft (WD) and corresponding Test Model (TM) were designed to combine technical aspects from multiple responses to the call. The current schedule for the project anticipates Final Draft International Standard (FDIS) in July 2020.

Neural Network Compression for Multimedia Applications

MPEG evaluates responses to the Call for Proposal and kicks off its technical work

Artificial neural networks have been adopted for a broad range of tasks in multimedia analysis and processing, such as visual and acoustic classification, extraction of multimedia descriptors or image and video coding. The trained neural networks for these applications contain a large number of parameters (i.e., weights), resulting in a considerable size. Thus, transferring them to a number of clients using them in applications (e.g., mobile phones, smart cameras) requires compressed representation of neural networks.
At its 126th meeting, MPEG analyzed nine technologies submitted by industry leaders as responses to the Call for Proposals (CfP) for Neural Network Compression. These technologies address compressing neural network parameters in order to reduce their size for transmission and the efficiency of using them, while not or only moderately reducing their performance in specific multimedia applications.
After a formal evaluation of submissions, MPEG identified three main technology components in the compression pipeline, which will be further studied in the development of the standard. A key conclusion is that with the proposed technologies, a compression to 10% or less of the original size can be achieved with no or negligible performance loss, where this performance is measured as classification accuracy in image and audio classification, matching rate in visual descriptor matching, and PSNR reduction in image coding. Some of these technologies also result in the reduction of the computational complexity of using the neural network or can benefit from specific capabilities of the target hardware (e.g., support for fixed point operations).
Bitmovin products and solutions utilize artificial intelligence (AI) techniques, such as AI-enabled encoding, for increased performance and quality of experience (QoE).

Low Complexity Enhancement Video Coding

MPEG evaluates responses to the Call for Proposal and selects a Test Model for further development

MPEG started a new work item referred to as Low Complexity Enhancement Video Coding (LCEVC), which will be added as part 2 of the MPEG-5 suite of codecs. The new standard is aimed at bridging the gap between two successive generations of codecs by providing a codec-agile extension to existing video codecs that improves coding efficiency and can be readily deployed via software upgrade and with sustainable power consumption.
The target is to achieve:

  • coding efficiency close to High Efficiency Video Coding (HEVC) Main 10 by leveraging Advanced Video Coding (AVC) Main Profile and
  • coding efficiency close to upcoming next generation video codecs by leveraging HEVC Main 10.

This coding efficiency should be achieved while maintaining overall encoding and decoding complexity lower than that of the leveraged codecs (i.e., AVC and HEVC, respectively) when used in isolation at full resolution. This target has been met, and one of the responses to the CfP will serve as starting point and test model for the standard. The new standard is expected to become part of the MPEG-5 suite of codecs and its development is expected to be completed in 2020.
Bitmovin is known to be an early adopter w.r.t. video codecs and was the first to demonstrate AV1 in production environment. Currently, all modern video codecs (AVC, HEVC, VP9, AV1) are fully supported and codecs under development including VVC but also EVC and LCEVC are currently under investigation by our encoding team.

Point Cloud Compression

MPEG promotes its Geometry-based Point Cloud Compression (G-PCC) technology to the Committee Draft (CD) stage

MPEG’s Geometry-based Point Cloud Compression (G-PCC) standard addresses lossless and lossy coding of time-varying 3D point clouds with associated attributes such as color and material properties. This technology is appropriate especially for sparse point clouds.
MPEG’s Video-based Point Cloud Compression (V-PCC) addresses the same problem but for dense point clouds, by projecting the (typically dense) 3D point clouds onto planes, and then processing the resulting sequences of 2D images with video compression techniques.
G-PCC provides a generalized approach, which directly codes the 3D geometry to exploit any redundancy found in the point cloud itself and is complementary to V-PCC and particularly useful for sparse point clouds representing large environments.
Point clouds are typically represented by extremely large amounts of data, which is a significant barrier for mass market applications. However, the relative ease to capture and render spatial information compared to other volumetric video representations makes point clouds increasingly popular to present immersive volumetric data. The current implementation of a lossless, intra-frame G PCC encoder provides a compression ratio up to 10:1 and acceptable quality lossy coding of ratio up to 35:1.
Bitmovin — in collaboration with Alpen-Adria-Universität Klagenfurt — is actively researching in the area of dynamic adaptive point cloud streaming, published first results in ACM Packet Video 2018 and will continue this effort considering both V-PCC and G-PCC.

MPEG Media Transport (MMT)

MPEG approves 3rd Edition of Final Draft International Standard

MMT 3rd edition will introduce two aspects:

  • enhancements for mobile environments and
  • support of Contents Delivery Networks (CDNs).

The support for multipath delivery will enable delivery of services over more than one network connection concurrently, which is specifically useful for mobile devices that can support more than one connection at a time.
Additionally, support for intelligent network entities involved in media services (i.e., Media Aware Network Entity (MANE)) will make MMT-based services adapt to changes of the mobile network faster and better. Understanding the support for load balancing is an important feature of CDN-based content delivery, messages for DNS management, media resource update, and media request is being added in this edition.
On going developments within MMT will add support for the usage of MMT over QUIC (Quick UDP Internet Connections) and support of FCAST in the context of MMT.
Bitmovin is fully committed to new transport mechanisms and protocols and actively researched — again in collaboration with Alpen-Adria-Unviersität Klagenfurt — the usage of HTTP/2, QUIC, and even Information-Centric Networking (ICN) in the context of HTTP Adaptive Streaming (HAS) resulting in a plethora of high impact papers published at renowned scientific conferences and journals.

The post MPEG 126 Meeting Report appeared first on Bitmovin.

]]>
MPEG 125 Meeting Report https://bitmovin.com/blog/mpeg-125-meeting-report/ Thu, 14 Feb 2019 19:52:06 +0000 https://bitmovin.com/?p=25182 The 125th MPEG meeting concluded on January 18, 2019 in Marrakesh, Morocco with the following topics: Network-Based Media Processing (NBMP) – MPEG promotes NBMP to Committee Draft stage 3DoF+ Visual – MPEG issues Call for Proposals on Immersive 3DoF+ Video Coding Technology MPEG-5 Essential Video Coding (EVC) – MPEG starts work on MPEG-5 Essential   Video...

The post MPEG 125 Meeting Report appeared first on Bitmovin.

]]>
- Bitmovin

The 125th MPEG meeting concluded on January 18, 2019 in Marrakesh, Morocco with the following topics:

  • Network-Based Media Processing (NBMP) – MPEG promotes NBMP to Committee Draft stage
  • 3DoF+ Visual – MPEG issues Call for Proposals on Immersive 3DoF+ Video Coding Technology
  • MPEG-5 Essential Video Coding (EVC) – MPEG starts work on MPEG-5 Essential   Video Coding
  • ISOBMFF – MPEG issues Final Draft International Standard of Conformance and Reference software for formats based on the ISO Base Media File Format (ISOBMFF)
  • MPEG-21 User Description – MPEG finalizes 2nd edition of the MPEG-21 User Description

The corresponding press release of the 125th MPEG meeting can be found here: http://mpeg.chiariglione.org/meetings/125
In this blog post I’d like to focus on those topics potentially relevant for OTT, namely NBMP, EVC, and ISOBMFF.

Network-Based Media Processing (NBMP)

The NBMP standard addresses the increasing complexity and sophistication of media services, specifically as the incurred media processing requires offloading complex media processing operations to the cloud/network to keep receiver hardware simple and power consumption low. Therefore, NBMP standard provides a standardized framework that allows content and service providers to describe, deploy, and control media processing for their content in the cloud. It comes with two main functions: (i) an abstraction layer to be deployed on top of existing cloud platforms (+ support for 5G core and edge computing) and (ii) a workflow manager to enable composition of multiple media processing tasks (i.e., process incoming media and metadata from a media source and produce processed media streams and metadata that are ready for distribution to a media sink). The NBMP standard now reached Committee Draft (CD) stage and the final milestone is targeted for early 2020.
In particular, a standard like NBMP might become handy in the context of 5G in combination with mobile edge computing (MEC) which allows offloading certain tasks to a cloud environment in close proximity to the end user. For OTT, this could enable lower latency and more content being personalized towards the user’s context conditions and needs, hopefully leading to a better quality and user experience.

MPEG-5 Essential Video Coding (EVC)

MPEG-5 EVC clearly targets the high demand for efficient and cost-effective video coding technologies. Therefore, MPEG commenced work on such a new video coding standard that should have two profiles: (i) royalty-free baseline profile and (ii) main profile, which adds a small number of additional tools, each of which is capable, on an individual basis, of being either cleanly switched off or else switched over to the corresponding baseline tool. Timely publication of licensing terms (if any) is obviously very important for the success of such a standard.
The target coding efficiency for responses to the call for proposals was to be at least as efficient as HEVC. This target was exceeded by approximately 24% and the development of the MPEG-5 EVC standard is expected to be completed in 2020.
As of today, there’s the need to support AVC, HEVC, VP9, and AV1; soon VVC will become important. In other words, we already have a multi-codec environment to support and one might argue one more codec is probably not a big issue. The main benefit of EVC will be a royalty-free baseline profile but with AV1 there’s already such a codec available and it will be interesting to see how the royalty-free baseline profile of EVC compares to AV1.

ISO Base Media File Format (ISOBMFF)

The ISOBMFF (ISO/IEC 14496-12) is used as basis for many file (e.g., MP4) and streaming formats (e.g., DASH, CMAF) and as such received widespread adoption in both industry and academia. An overview of ISOBMFF is available here.
The reference software is now available on GitHub (https://github.com/MPEGGroup/isobmff) and a plethora of conformance files are available here: http://download.tsi.telecom-paristech.fr/gpac/MPEG/ISOBMFF-Conformance/.
Please note that Bitmovin is also present on GitHub with various assets, see https://github.com/bitmovin for details.

Video technology guides and articles

The post MPEG 125 Meeting Report appeared first on Bitmovin.

]]>
MPEG 124 Meeting Report https://bitmovin.com/blog/mpeg-124-meeting-report/ Tue, 13 Nov 2018 14:07:34 +0000 http://bitmovin.com/?p=24774 The 124th MPEG meeting concluded on October 12, 2018 in Macao S.A.R., China. Discussions and announcement topics covered a range of areas from licensing to quality and efficiency improvements: Point Cloud Compression – MPEG promotes a video-based point cloud compression technology to the Committee Draft stage Compressed Representation of Neural Networks – MPEG issues Call...

The post MPEG 124 Meeting Report appeared first on Bitmovin.

]]>
MPEG meeting 124

The 124th MPEG meeting concluded on October 12, 2018 in Macao S.A.R., China. Discussions and announcement topics covered a range of areas from licensing to quality and efficiency improvements:

  • Point Cloud Compression – MPEG promotes a video-based point cloud compression technology to the Committee Draft stage
  • Compressed Representation of Neural Networks – MPEG issues Call for Proposals
  • Low Complexity Video Coding Enhancements – MPEG issues Call for Proposals
  • New Video Coding Standard expected to have licensing terms timely available – MPEG issues Call for Proposals
  • Multi-Image Application Format (MIAF) promoted to Final Draft International Standard
  • 3DoF+ Draft Call for Proposal goes Public
  • VVC – Versatile Video Coding

Point Cloud Compression – MPEG promotes a video-based point cloud compression technology to the Committee Draft stage

At its 124th meeting, MPEG promoted its Video-based Point Cloud Compression (V-PCC) standard to Committee Draft (CD) stage. V-PCC addresses lossless and lossy coding of 3D point clouds with associated attributes such as colour. By leveraging existing and video ecosystems in general (hardware acceleration, transmission services and infrastructure), and future video codecs as well, the V-PCC technology enables new applications. The current V-PCC encoder implementation provides a compression of 125:1, which means that a dynamic point cloud of 1 million points could be encoded at 8 Mbit/s with good perceptual quality.
A next step is the storage and delivery aspects of V-PCC in ISOBMFF for which a working draft has been produced. It is expected that further details will be discussed in upcoming reports.

MPEG issues Call for Proposals on Compressed Representation of Neural Networks

Artificial neural networks have been adopted for a broad range of tasks in multimedia analysis and processing, media coding, data analytics, and many other fields. Their recent success is based on the feasibility of processing much larger and complex neural networks (deep neural networks, DNNs) than in the past, and the availability of large-scale training data sets. Some applications require the deployment of a particular trained network instance to a potentially large number of devices and, thus, could benefit from a standard for the compressed representation of neural networks. Therefore, MPEG has issued a Call for Proposals (CfP) for compression technology for neural networks, focusing on the compression of parameters and weights, for four use cases: (i) visual object classification, (ii) audio classification, (iii) visual feature extraction (as used in MPEG CDVA), and (iv) video coding.

MPEG issues Call for Proposals on Low Complexity Video Coding Enhancements

Upon request from the industry, MPEG has identified an area of interest in which video technology deployed in the market (e.g., AVC, HEVC) can be enhanced in terms of video quality without the need to necessarily replace existing hardware. Therefore, MPEG has issued a Call for Proposals (CfP) on Low Complexity Video Coding Enhancements.
The objective is to develop video coding technology with a data stream structure defined by two component streams: a base stream decodable by a hardware decoder and an enhancement stream suitable for software processing implementation. The project is meant to be codec agnostic; in other words, the base encoder and base decoder can be AVC, HEVC, or any other codec in the market.

MPEG issues Call for Proposals for a New Video Coding Standard expected to have licensing terms timely available

MPEG has issued a Call for Proposals (CfP) for a new video coding standard to address combinations of both technical and application (i.e., business) requirements that may not be adequately met by existing standards. The aim is to provide a standardized video compression solution which combines coding efficiency similar to that of HEVC with a level of complexity suitable for real-time encoding/decoding and the timely availability of licensing terms.

Multi-Image Application Format (MIAF) promoted to Final Draft International Standard

The Multi-Image Application Format (MIAF) defines interoperability points for creation, reading, parsing, and decoding of images embedded in High Efficiency Image File (HEIF) format by (i) only defining additional constraints on the HEIF format, (ii) limiting the supported encoding types to a set of specific profiles and levels, (iii) requiring specific metadata formats, and (iv) defining a set of brands for signaling such constraints including specific depth map and alpha plane formats. For instance, it addresses use case like a capturing device may use one of HEIF codecs with a specific HEVC profile and level in its created HEIF files, while a playback device is only capable of decoding the AVC bitstreams.

3DoF+ Draft Call for Proposal goes Public

Following investigations on the coding of “three Degrees of Freedom plus” (3DoF+) content in the context of MPEG-I, the MPEG video subgroup has provided evidence demonstrating the capability to encode a 3DoF+ content efficiently while maintaining compatibility with legacy HEVC hardware. As a result, MPEG decided to issue a draft Call for Proposal (CfP) to the public containing the information necessary to prepare for the final Call for Proposal expected to occur at the 125th MPEG meeting (January 2019) with responses due at the 126th MPEG meeting (March 2019).

VVC – Versatile Video Coding

VVC is the evolutionary next step from HEVC and is targeted for release in Oct 2020 and promises a wide range of refined and new coding tools. Hundreds of proposals were discussed in all areas of the codec including: Inter/Intra prediction and Coding, new transform ideas and decoder side estimation techniques (which is quite novel for a video coding standard).
So far very preliminary results are showing about a 25% Y BD-rate reduction compared to HEVC (HM 16.19).  Not all adopted tools are in the software yet and more will be adopted so it is reasonable to expect these results to improve further.
Since the standardization activity is still ongoing the licensing situation is not clear yet. While it is possible that we end up with a similar licensing situation to HEVC, he media coding industry forum (MC-IF) is working actively to avoid this.

What else happened at #MPEG124?

  • MPEG-DASH 3rd edition is still in the final editing phase and not yet available. Last time, I wrote that we expect final publication later this year or early next year and we hope this is still the case. At this meeting Amendment.5 is progressed to DAM and conformance/reference software for SRD, SAND and Server Push is also promoted to DAM. In other words, DASH is pretty much in maintenance mode.
  • MPEG-I (systems part) is working on immersive media access and delivery and I guess more updates will come on this after the next meeting. OMAF is working on a 2nd edition for which a working draft exists and phase 2 use cases (public document) and draft requirements are discussed.
  • Versatile Video Coding (VVC): working draft 3 (WD3) and test model 3 (VTM3) has been issued at this meeting including a large number of new tools. Both documents (and software) will be publicly available after editing periods (Nov. 23 for WD3 and Dec 14 for VTM3).

The corresponding press release of the 124th MPEG meeting can be found here: http://mpeg.chiariglione.org/meetings/124

The post MPEG 124 Meeting Report appeared first on Bitmovin.

]]>
MPEG 123 Meeting Report https://bitmovin.com/blog/mpeg-123-meeting-report/ Tue, 31 Jul 2018 09:38:49 +0000 http://bitmovin.com/?p=23965 The 123rd MPEG meeting concluded on July 20, 2018 in Ljubljana, SI with the following topics: MPEG issues call for evidence on compressed representation of neural networks Network-Based Media Processing (NBMP) – MPEG evaluates responses to call for proposal and kicks off its technical work MPEG finalizes 1st edition of technical report on architectures for...

The post MPEG 123 Meeting Report appeared first on Bitmovin.

]]>
- Bitmovin

The 123rd MPEG meeting concluded on July 20, 2018 in Ljubljana, SI with the following topics:

  • MPEG issues call for evidence on compressed representation of neural networks
  • Network-Based Media Processing (NBMP) – MPEG evaluates responses to call for proposal and kicks off its technical work
  • MPEG finalizes 1st edition of technical report on architectures for immersive media
  • MPEG releases software for MPEG-I visual 3DoF+ objective quality assessment
  • MPEG enhances ISO Base Media File Format (ISOBMFF) with new features

The corresponding press release of the 123rd MPEG meeting can be found here: http://mpeg.chiariglione.org/meetings/123

MPEG issues call for evidence on compressed representation of neural networks

Artificial intelligence (AI) including — but not limited to — Artificial neural networks have been adopted for a broad range of tasks in multimedia analysis, retrieval, and processing, media coding, data analytics, translation services and many other fields. Their recent success is based on the feasibility of processing much larger and complex neural networks (deep neural networks, DNNs) than in the past, and the availability of large-scale training data sets. As a consequence, trained neural networks contain a large number of parameters (weights), resulting in a large size (e.g., several hundred MBs). Many applications require the deployment of a particular trained network instance, potentially to a larger number of devices, which may have limitations in terms of network bandwidth, processing power, and memory (e.g., mobile devices or smart cameras). Any use case, in which a trained neural network (and its updates) needs to be deployed to a number of devices could thus benefit from a standard for the compressed representation of neural networks.
At its 123rd meeting, MPEG has issued a Call for Evidence (CfE) for compression technology for neural networks. The compression technology will be evaluated in terms of compression efficiency, runtime, and memory consumption and the impact on performance in three use cases: (i) visual object classification, (ii) visual feature extraction (as used in MPEG Compact Descriptors for Visual Analysis) and (iii) filters for video coding. Responses to the CfE will be analyzed on the weekend prior to and during the 124th MPEG meeting in October 2018 (Macau, CN).

Network-Based Media Processing (NBMP) – MPEG evaluates responses to call for proposal and kicks off its technical work

Recent developments in multimedia have brought significant innovation and disruption to the way multimedia content is created and consumed. At its 123rd meeting, MPEG analyzed the technologies submitted by eight industry leaders as responses to the Call for Proposals (CfP) for Network-Based Media Processing (NBMP, MPEG-I Part 8). These technologies address advanced media processing use cases such as network stitching for virtual reality (VR) services, super-resolution for enhanced visual quality, transcoding by a mobile edge cloud, or viewport extraction for 360-degree video within the network environment. NBMP allows service providers and end users to describe media processing operations that are to be performed by the entities in the networks. NBMP will describe the composition of network-based media processing services out of a set of NBMP functions and makes these NBMP services accessible through Application Programming Interfaces (APIs).
NBMP will support the existing delivery methods such as streaming, file delivery, push-based progressive download, hybrid delivery, and multipath delivery within heterogeneous network environments. MPEG issued a Call for Proposal (CfP) seeking technologies that allow end-user devices, which are limited in processing capabilities and power consumption, to offload certain kinds of processing to the network.
After a formal evaluation of submissions, MPEG selected three technologies as starting points for the (i) workflow, (ii) metadata, and (iii) interfaces for static and dynamically acquired NBMP. A key conclusion of the evaluation was that NBMP can significantly improve the performance and efficiency of the cloud infrastructure and media processing services.

MPEG finalizes 1st edition of technical report on architectures for immersive media

At its 123nd meeting, MPEG finalized the first edition of its Technical Report (TR) on architectures for immersive media. This report constitutes the first part of the MPEG-I standard for the coded representation of immersive media and introduces the eight MPEG-I parts currently under specification in MPEG. In particular, it addresses three Degrees of Freedom (3DoF; three rotational and un-limited movements around the X, Y and Z axes (respectively pitch, yaw and roll)), 3DoF+ (3DoF with additional limited translational movements (typically, head movements) along X, Y and Z axes), and 6DoF (3DoF with full translational movements along X, Y and Z axes) experiences but it mostly focuses on 3DoF. Future versions are expected to cover aspects beyond 3DoF. The report documents use cases and defines architectural views on elements that contribute to an overall immersive experience. Finally, the report also includes quality considerations for immersive services and introduces minimum requirements as well as objectives for a high-quality immersive media experience.

MPEG releases software for MPEG-I visual 3DoF+ objective quality assessment

MPEG-I visual is an activity that addresses the specific requirements of immersive visual media for six degrees of freedom virtual walkthroughs with correct motion parallax within a bounded volume (3DoF+). MPEG-I visual covers application scenarios from 3DoF+ with slight body and head movements in a sitting position to 6DoF allowing some walking steps from a central position. At the 123nd MPEG meeting, an important progress has been achieved in software development. A new Reference View Synthesizer (RVS 2.0) has been released for 3DoF+, allowing to synthesize virtual viewpoints from an unlimited number of input views. RVS integrates code bases from Universite Libre de Bruxelles and Philips, who acted as software coordinator. A Weighted-to-Spherically-uniform PSNR (WS-PSNR) software utility, essential to 3DoF+ and 6DoF activities, has been developed by Zhejiang University. WS-PSNR is a full reference objective quality metric for all flavors of omnidirectional video. RVS and WS-PSNR are essential software tools for the upcoming Call for Proposals on 3DoF+ expected to be released at the 124th MPEG meeting in October 2018 (Macau, CN).

MPEG enhances ISO Base Media File Format (ISOBMFF) with new features

At the 123rd MPEG meeting, a couple of new amendments related to ISOBMFF has reached the first milestone. Amendment 2 to ISO/IEC 14496-12 6th edition will add the option to have relative addressing as an alternative to offset addressing, which in some environments and workflows can simplify the handling of files and will allow creation of derived visual tracks using items and samples in other tracks with some transformation, for example rotation. Another amendment reached its first milestone is the first amendment to ISO/IEC 23001-7 3rd edition. It will allow use of multiple keys to a single sample and scramble some parts of AVC or HEVC video bitstreams without breaking conformance to the existing decoders. That is, the bitstream will be decodable by existing decoders, but some parts of the video will be scrambled. It is expected that these amendments will reach the final milestone in Q3 2019.

What else happened at #MPEG123?

  • The MPEG-DASH 3rd edition is finally available as output document (N17813; only available to MPEG members) combining 2nd edition, four amendments, and 2 corrigenda. We expect final publication later this year or early next year.
  • There is a new DASH amendment and corrigenda items in pipeline which should progress to final stages also some time next year. The status of MPEG-DASH (July 2018) can be seen below.
    - Bitmovin
  • MPEG received a rather interesting input document related to “streaming first” which resulted into a publicly available output document entitled “thoughts on adaptive delivery and access to immersive media”. The key idea here is to focus on streaming (first) rather than on file/encapsulation formats typically used for storage (and streaming second).
  • Since a couple of meetings, MPEG maintains a standardization roadmap highlighting recent/major MPEG standards and documenting the roadmap for the next five years. It definitely worth keeping this in mind when defining/updating your own roadmap.
  • JVET/VVC issued Working Draft 2 of Versatile Video Coding (N17732 | JVET-K1001) and Test Model 2 of Versatile Video Coding (VTM 2) (N17733 | JVET-K1002). Please note that N-documents are MPEG internal but JVET-documents are publicly accessible here: http://phenix.it-sudparis.eu/jvet/. An interesting aspect is that VTM2/WD2 should have >20% rate reduction compared to HEVC, all with reasonable complexity and the next benchmark set (BMS) should have close to 30% rate reduction vs. HEVC. Further improvements expected from (a) improved merge, intra prediction, etc., (b) decoder-side estimation with low complexity, (c) multi-hypothesis prediction and OBMC, (d) diagonal and other geometric partitioning, (e) secondary transforms, (f) new approaches of loop filtering, reconstruction and prediction filtering (de-noising, non-local, diffusion based, bilateral, etc.), (g) current picture referencing, palette, and (h) neural networks.
  • In addition to VVC — which is a joint activitiy with VCEG — MPEG is working on two video-related exploration activities, namely (a) an enhanced quality profile of the AVC standard and (b) a low complexity enhancement video codec. Both topics will be further discussed within respective Ad-hoc Groups (AhGs) and further details are available here: http://mpeg.chiariglione.org/meetings/123.
  • Finally, MPEG established an Ad-hoc Group (AhG) dedicated to the long-term planning which is also looking into application areas/domains other than media coding/representation.
  • The MPEG group celebrated 30 years at the 123rd meeting in Ljubljana with custom hoodies sponsored by Bitmovin. Check it out, modeled here by the MPEG President Leonardo Chiariglione with Bitmovin’s Chief Scientist Christian Timmerer.

- Bitmovin

The post MPEG 123 Meeting Report appeared first on Bitmovin.

]]>
MPEG 122 Meeting Report https://bitmovin.com/blog/mpeg-122-meeting-report/ Tue, 01 May 2018 20:56:42 +0000 http://bitmovin.com/?p=23250 The 122nd MPEG meeting concluded on April 20, 2018 in San Diego, CA, USA with the following topics: Versatile Video Coding (VVC) project starts strongly in the Joint Video Experts Team MPEG issues Call for Proposals on Network-based Media Processing MPEG finalizes 7th edition of MPEG-2 Systems Standard MPEG enhances ISO Base Media File Format...

The post MPEG 122 Meeting Report appeared first on Bitmovin.

]]>
MPEG meeting
The 122nd MPEG meeting concluded on April 20, 2018 in San Diego, CA, USA with the following topics:

  • Versatile Video Coding (VVC) project starts strongly in the Joint Video Experts Team
  • MPEG issues Call for Proposals on Network-based Media Processing
  • MPEG finalizes 7th edition of MPEG-2 Systems Standard
  • MPEG enhances ISO Base Media File Format (ISOBMFF) with two new features
  • MPEG-G standards reach Draft International Standard for transport and compression technologies

The corresponding press release of the 122nd MPEG meeting can be found here: http://mpeg.chiariglione.org/meetings/122

Versatile Video Coding (VVC) – MPEG’ & VCEG’s new video coding project starts strong

The Joint Video Experts Team (JVET), a collaborative team formed by MPEG and ITU-T Study Group 16’s VCEG, commenced work on a new video coding standard referred to as Versatile Video Coding (VVC). The goal of VVC is to provide significant improvements in compression performance over the existing HEVC standard (i.e., typically twice as much as before) and to be completed in 2020. The main target applications and services include — but not limited to — 360-degree and high-dynamic-range (HDR) videos. In total, JVET evaluated responses from 32 organizations using formal subjective tests conducted by independent test labs. Interestingly, some proposals demonstrated compression efficiency gains of typically 40% or more when compared to using HEVC. Particular effectiveness was shown on ultra-high definition (UHD) video test material. Thus, we may expect compression efficiency gains well-beyond the targeted 50% for the final standard.
VVC is obviously the new kid on the block in addition to those formats used today as well as those considered in the near future, i.e., AVC, HEVC, VP9 and the new AV1 video codec. In 2017 we have conducted a video developer survey and it would be interesting how VVC will be noticed within the video developer community. Recently, we published a multi-codec DASH dataset arguing for efficient support of multiple video codecs, which we see confirmed with the appearance of VVC.

MPEG issues Call for Proposals on Network-based Media Processing

This Call for Proposals (CfP) addresses advanced media processing technologies such as network stitching for VR service, super resolution for enhanced visual quality, transcoding, and viewport extraction for 360-degree video within the network environment that allows service providers and end users to describe media processing operations that are to be performed by the network. Therefore, the aim of network-based media processing (NBMP) is to allow end user devices to offload certain kinds of processing to the network. Therefore, NBMP describes the composition of network-based media processing services based on a set of media processing functions and makes them accessible through Application Programming Interfaces (APIs). Responses to the NBMP CfP will be evaluated on the weekend prior to the 123rd MPEG meeting in July 2018.

MPEG Systems News

7th edition of MPEG-2 Systems Standard

More than 20 years since its inception development of MPEG-2 systems technology (i.e., transport/program stream) continues. New features include support for: (i) JPEG 2000 video with 4K resolution and ultra-low latency, (ii) media orchestration related metadata, (iii) sample variance, and (iv) HEVC tiles.

ISO Base Media File Format (ISOBMFF) with two new features

The partial file format enables the description of an ISOBMFF file partially received over lossy communication channels. This format provides tools to describe reception data, the received data and document transmission information such as received or lost byte ranges and whether the corrupted/lost bytes are present in the file and repair information such as location of the source file, possible byte offsets in that source, byte stream position at which a parser can try processing a corrupted file. Depending on the communication channel, this information may be setup by the receiver or through out-of-band means.
Sample variants (2nd edition), which are typically used to provide forensic information in the rendered sample data that can, for example, identify the specific Digital Rights Management (DRM) client which has decrypted the content. This variant framework is intended to be fully compatible with MPEG’s Common Encryption (CENC) and agnostic to the particular forensic marking system used.

MPEG-2 transport stream and ISO base media file format are fundamental formats for HTTP adaptive streaming (HAS), specifically DASH and HLS! Both formats are fully supported within Bitmovin’s encoding and player offerings.

MPEG-G standards reach Draft International Standard for transport and compression technologies

MPEG-G provides a set of standards enabling interoperability for applications and services dealing with high-throughput deoxyribonucleic acid (DNA) sequencing. At its 122nd meeting, MPEG promoted its core set of MPEG-G specifications, i.e., transport and compression technologies, to Draft International Standard (DIS) stage. Such parts of the standard provide new transport technologies (ISO/IEC 23092-1) and compression technologies (ISO/IEC 23092-2) supporting rich functionality for the access and transport including streaming of genomic data by interoperable applications. Reference software (ISO/IEC 23092-4) and conformance (ISO/IEC 23092-5) will reach this stage in the next 12 months.

WHAT ELSE HAPPENED at MPEG122?

  • Requirements is exploring new video coding tools dealing with low-complexity and process enhancements.
  • The activity around coded representation of neural networks has defined a set of vital use cases and is now calling for test data to be solicited until the next meeting.
  • The MP4 registration authority (MP4RA) has a new awesome web site http://mp4ra.org/.
  • MPEG-DASH is finally approving and working the 3rd edition comprising consolidated version of recent amendments and corrigenda.
  • CMAF started an exploration on multi-stream support, which could be relevant for tiled streaming and multi-channel audio.
  • OMAF kicked-off its activity towards a 2nd edition enabling support for 3DoF+ and social VR with the plan going to committee draft (CD) in Oct’18. Additionally, there’s a test framework proposed, which allows to assess performance of various CMAF tools. Its main focus is on video but MPEG’s audio subgroup has a similar framework to enable subjective testing. It could be interesting seeing these two frameworks combined in one way or the other.
  • MPEG-I architectures (yes plural) are becoming mature and I think this technical report will become available very soon. In terms of video, MPEG-I looks more closer at 3DoF+ defining common test conditions and a call for proposals (CfP) planned for MPEG123 in Ljubljana, Slovenia. Additionally, explorations for 6DoF and compression of dense representation of light fields are ongoing and have been started, respectively.
  • Finally, point cloud compression (PCC) is in its hot phase of core experiments for various coding tools resulting into updated versions of the test model and working draft.

Did we miss something? Maybe yes, feel free to contact us
Finally, on May 10 MPEG will celebrate 30 years as its first meeting dates back to 1988 in Ottawa, Canada with around 30 attendees. The 122nd meeting had more than 500 attendees and MPEG has around 20 active work items. A total of more than 170 standards have been produces (that’s approx. six standards per year) where some standards have up to nine editions like the HEVC standards. Overall, MPEG is responsible for more that 23% of all JTC 1 standards and some of them showing extraordinary longevity regarding extensions, e.g., MPEG-2 systems (24 years), MPEG-4 file format (19 years), and AVC (15 years). MPEG standards serve billions of users (e.g., MPEG-1 video, MP2, MP3, AAC, MPEG-2, AVC, ISOBMFF, DASH). Some — more precisely five — standards have receive Emmy awards in the past (MPEG-1, MPEG-2, AVC (2x), and HEVC).
Thus, happy birthday MPEG! In today’s society starts the high performance era with 30 years, basically the time of “compression”, i.e., we apply all what we learnt and live out everything, truly optimistic perspective for our generation X (millennials) standards body!

The post MPEG 122 Meeting Report appeared first on Bitmovin.

]]>
MPEG 121 Meeting Report https://bitmovin.com/blog/mpeg-121-meeting-report/ Wed, 07 Feb 2018 20:39:18 +0000 http://bitmovin.com/?p=22448 The 121st MPEG meeting concluded on January 26, 2018 in Gwangju, Korea with the following topics: Compact Descriptors for Video Analysis (CDVA) reaches Committee Draft level MPEG-G standards reach Committee Draft for metadata and APIs MPEG issues Calls for Visual Test Material for Immersive Applications Internet of Media Things (IoMT) reaches Committee Draft level MPEG...

The post MPEG 121 Meeting Report appeared first on Bitmovin.

]]>
MPEG Meeting no 121 in South Korea
The 121st MPEG meeting concluded on January 26, 2018 in Gwangju, Korea with the following topics:

  • Compact Descriptors for Video Analysis (CDVA) reaches Committee Draft level
  • MPEG-G standards reach Committee Draft for metadata and APIs
  • MPEG issues Calls for Visual Test Material for Immersive Applications
  • Internet of Media Things (IoMT) reaches Committee Draft level
  • MPEG finalizes its Media Orchestration (MORE) standard

The corresponding press release of the 121st MPEG meeting can be found here: http://mpeg.chiariglione.org/meetings/121
Overshadowing the meeting was a blog post by Leonardo Chiariglione published shortly after the 121st MPEG meeting, “a crisis, the causes and a solution”, which is related to HEVC licensing, Alliance for Open Media (AOM), and possible future options. The blog post certainly caused some reactions within the video community at large and I think this was also intended. Let’s hope it will galvanice the video industry — not to push the button — but to start addressing and resolving the issues. As pointed out in one of my other blog posts about what to care about in 2018, the upcoming MPEG meeting in April 2018 is certainly a place to be.
Here are detailed notes of the meeting followed with a brief summary of what else happened with regards to DASH, CMAF, OMAF as well as discuss future aspects of MPEG.

Compact Descriptors for Video Analysis (CDVA) reaches Committee Draft level

The Committee Draft (CD) for CDVA has been approved at the 121st MPEG meeting, which is the first formal step of the ISO/IEC approval process for a new standard. This will become a new part of MPEG-7 to support video search and retrieval applications (ISO/IEC 15938-15).
Managing and organizing the quickly increasing volume of video content is a challenge for many industry sectors, such as media and entertainment or surveillance. One example task is scalable instance search, i.e., finding content containing a specific object instance or location in a very large video database. This requires video descriptors which can be efficiently extracted, stored, and matched. Standardization enables extracting interoperable descriptors on different devices and using software from different providers, so that only the compact descriptors instead of the much larger source videos can be exchanged for matching or querying. The CDVA standard specifies descriptors that fulfil these needs and includes (i) the components of the CDVA descriptor, (ii) its bitstream representation and (iii) the extraction process. The final standard is expected to be finished in early 2019.
CDVA introduces a new descriptor based on features which are output from a Deep Neural Network (DNN). CDVA is robust against viewpoint changes and moderate transformations of the video (e.g., re-encoding, overlays), it supports partial matching and temporal localization of the matching content. The CDVA descriptor has a typical size of 2–4 KBytes per second of video. For typical test cases, it has been demonstrated to reach a correct matching rate of 88% (at 1% false matching rate).

MPEG-G standards reach Committee Draft for metadata and APIs

In my previous blog post I introduced the MPEG-G standard for compression and transport technologies of genomic data. At the 121st MPEG meeting, metadata and APIs reached CD level. The former – metadata – provides relevant information associated to genomic data and the latter – APIs – allow for building interoperable applications capable of manipulating MPEG-G files. Additional standardization plans for MPEG-G include the CDs for reference software (ISO/IEC 23092-4) and conformance (ISO/IEC 23092-4), which are planned to be issued at the next 122nd MPEG meeting with the objective of producing Draft International Standards (DIS) at the end of 2018.

MPEG issues Calls for Visual Test Material for Immersive Applications

I have reported about the Omnidirectional Media Format (OMAF) in my previous blog post. At the 121st MPEG meeting, MPEG was working on extending OMAF functionalities to allow the modification of viewing positions, e.g., in case of head movements when using a head-mounted display, or for use with other forms of interactive navigation. Unlike OMAF which only provides 3 degrees of freedom (3DoF) for the user to view the content from a perspective looking outwards from the original camera position, the anticipated extension will also support motion parallax within some limited range which is referred to as 3DoF+. In the future with further enhanced technologies, a full 6 degrees of freedom (6DoF) will be achieved with changes of viewing position over a much larger range. To develop technology in these domains, MPEG has issued two Calls for Test Material in the areas of 3DoF+ and 6DoF, asking owners of image and video material to provide such content for use in developing and testing candidate technologies for standardization. Details about these calls can be found at https://mpeg.chiariglione.org/.

Internet of Media Things (IoMT) reaches Committee Draft level

The goal of IoMT is is to facilitate the large-scale deployment of distributed media systems with interoperable audio/visual data and metadata exchange. This standard specifies APIs providing media things (i.e., cameras/displays and microphones/loudspeakers, possibly capable of significant processing power) with the capability of being discovered, setting-up ad-hoc communication protocols, exposing usage conditions, and providing media and metadata as well as services processing them. IoMT APIs encompass a large variety of devices, not just connected cameras and displays but also sophisticated devices such as smart glasses, image/speech analyzers and gesture recognizers. IoMT enables the expression of the economic value of resources (media and metadata) and of associated processing in terms of digital tokens leveraged by the use of blockchain technologies.

MPEG finalizes its Media Orchestration (MORE) standard

MPEG “Media Orchestration” (MORE) standard reached Final Draft International Standard (FDIS), the final stage of development before being published by ISO/IEC. The scope of the Media Orchestration standard is as follows:

  • It supports the automated combination of multiple media sources (i.e., cameras, microphones) into a coherent multimedia experience.
  • It supports rendering multimedia experiences on multiple devices simultaneously, again giving a consistent and coherent experience.
  • It contains tools for orchestration in time (synchronization) and space.

MPEG expects that the Media Orchestration standard to be especially useful in immersive media settings. This applies notably in social virtual reality (VR) applications, where people share a VR experience and are able to communicate about it. Media Orchestration is expected to allow synchronising the media experience for all users, and to give them a spatially consistent experience as it is important for a social VR user to be able to understand when other users are looking at them.

What else happened at the MPEG meeting?

DASH is fully in maintenance mode and we are still waiting for the 3rd edition which is supposed to be a consolidation of existing corrigenda and amendments. Currently only minor extensions are proposed and conformance/reference software is being updated. Similar things can be said for CMAF where we have one amendment and one corrigendum under development. Additionally, MPEG is working on CMAF conformance. OMAF has reached FDIS at the last meeting and MPEG is working on reference software and conformance also. It is expected that in the future we will see additional standards and/or technical reports defining/describing how to use CMAF and OMAF in DASH.
Regarding the future video codec, the call for proposals is out since the last meeting as announced in my previous blog post and responses are due for the next meeting. Thus, it is expected that the 122nd MPEG meeting will be the place to be in terms of MPEG’s future video codec.

The post MPEG 121 Meeting Report appeared first on Bitmovin.

]]>
MPEG 120 Meeting Report https://bitmovin.com/blog/mpeg-120-meeting-report/ Tue, 07 Nov 2017 10:49:29 +0000 http://bitmovin.com/?p=21756 The 120th MPEG meeting concluded on October 27, 2017 in Macau, China with the following topics: Point Cloud Compression – MPEG evaluates responses to call for proposal and kicks off its technical work The omnidirectional media format (OMAF) has reached its final milestone MPEG-G standards reach Committee Draft for compression and transport technologies of genomic...

The post MPEG 120 Meeting Report appeared first on Bitmovin.

]]>
MPEG Meeting 20 in Macau China
The 120th MPEG meeting concluded on October 27, 2017 in Macau, China with the following topics:

  • Point Cloud Compression – MPEG evaluates responses to call for proposal and kicks off its technical work
  • The omnidirectional media format (OMAF) has reached its final milestone
  • MPEG-G standards reach Committee Draft for compression and transport technologies of genomic data
  • Beyond HEVC – The MPEG & VCEG call to set the next standard in video compression
  • MPEG adds better support for mobile environment to MMT
  • New standard completed for Internet Video Coding
  • Evidence of new video transcoding technology using side streams

The corresponding press release of the 120th MPEG meeting can be found here: http://mpeg.chiariglione.org/meetings/120

Point Cloud Compression

At its 120th meeting, MPEG analysed the technologies submitted by nine industry leaders as responses to the Call for Proposals (CfP) for Point Cloud Compression (PCC). These technologies address the lossless or lossy coding of 3D point clouds with associated attributes such as colour and material properties. Point clouds are referred to as unordered sets of points in a 3D space and typically captured using various setups of multiple cameras, depth sensors, LiDAR scanners, etc., but can also be generated synthetically and are in use in several industries. They have recently emerged as representations of the real world enabling immersive forms of interaction, navigation, and communication. Point clouds are typically represented by extremely large amounts of data providing a significant barrier for mass market applications. Thus, MPEG has issued a Call for Proposal seeking technologies that allow reduction of point cloud data for its intended applications. After a formal objective and subjective evaluation campaign, MPEG selected three technologies as starting points for the test models for static, animated, and dynamically acquired point clouds. A key conclusion of the evaluation was that state-of-the-art point cloud compression can be significantly improved by leveraging decades of 2D video coding tools and combining 2D and 3D compression technologies. Such an approach provides synergies with existing hardware and software infrastructures for rapid deployment of new immersive experiences.

Omnidirectional Media Format (OMAF)

The understanding of the virtual reality (VR) potential is growing but market fragmentation caused by the lack of interoperable formats for the storage and delivery of such content stifles VR’s market potential. MPEG’s recently started project referred to as Omnidirectional Media Format (OMAF) has reached Final Draft of International Standard (FDIS) at its 120th meeting. It includes

  • equirectangular projection and cubemap projection as projection formats;
  • signalling of metadata required for interoperable rendering of 360-degree monoscopic and stereoscopic audio-visual data; and
  • provides a selection of audio-visual codecs for this application.

It also includes technologies to arrange video pixel data in numerous ways to improve compression efficiency and reduce the size of video, a major bottleneck for VR applications and services, The standard also includes technologies for the delivery of OMAF content with MPEG-DASH and MMT.
Bitmovin recently received the Excellence in DASH Award for its tile-based streaming of VR and 360-degree video content and also integrated ambisonic audio to enable a truly submersive media experience.

MPEG-G: Compression and Transport Technologies of Genomic Data

The availability of high throughput DNA sequencing technologies opens new perspectives in the treatment of several diseases making possible the introduction of new global approaches in public health known as “precision medicine”. While routine DNA sequencing in the doctor’s office is still not current practice, medical centers have begun to use sequencing to identify cancer and other diseases and to find effective treatments. As DNA sequencing technologies produce extremely large amounts of data and related information, the ICT costs of storage, transmission, and processing are also very high. The MPEG-G standard addresses and solves the problem of efficient and economical handling of genomic data by providing new

  • compression technologies (ISO/IEC 23092-2) and
  • transport technologies (ISO/IEC 23092-1),

which reached Committee Draft level at its 120th meeting. Additionally, the Committee Drafts for

  • metadata and APIs (ISO/IEC 23092-3) and
  • reference software (ISO/IEC 23092-4)

are scheduled for the next MPEG meeting and the goal is to publish Draft International Standards (DIS) at the end of 2018.

Beyond HEVC – The MPEG & VCEG Call to set the Next Standard in Video Compression

The 120th MPEG meeting marked the first major step toward the next generation of video coding standard in the form of a joint Call for Proposals (CfP) with ITU-T SG16’s VCEG. After two years of collaborative informal exploration studies and a gathering of evidence that successfully concluded at the 118th MPEG meeting, MPEG and ITU-T SG16 agreed to issue the CfP for future video coding technology with compression capabilities that significantly exceed those of the HEVC standard and its current extensions. They also formalized an agreement on formation of a joint collaborative team called the “Joint Video Experts Team” (JVET) to work on development of the new planned standard, pending the outcome of the CfP that will be evaluated at the 122nd MPEG meeting in April 2018. To evaluate the proposed compression technologies, formal subjective tests will be performed using video material submitted by proponents in February 2018. The CfP includes the testing of technology for 360° omnidirectional video coding and the coding of content with high-dynamic range and wide colour gamut in addition to conventional standard-dynamic-range camera content. Anticipating a strong response to the call, a “test model” draft design is expected be selected in 2018, with development of a potential new standard in late 2020.
Bitmovin products and services support HEVC in addition to AVC and AV1 and looks forward to a bright future in terms of video coding enabling superb quality of experience for end users of adaptive streaming technologies.

MPEG adds Better Support for Mobile Environment to MPEG Media Transport (MMT)

MPEG has approved the Final Draft Amendment (FDAM) to MPEG Media Transport (MMT; ISO/IEC 23008-1:2017), which is referred to as “MMT enhancements for mobile environments”. In order to reflect industry needs on MMT, which has been well adopted by broadcast standards such as ATSC 3.0 and Super Hi-Vision, it addresses several important issues on the efficient use of MMT in mobile environments. For example, it adds distributed resource identification message to facilitate multipath delivery and transition request message to change the delivery path of an active session. This amendment also introduces the concept of a MMT-aware network entity (MANE), which might be placed between the original server and the client, and provides a detailed description about how to use it for both improving efficiency and reducing delay of delivery. Additionally, this amendment provides a method to use WebSockets to setup and control an MMT session/presentation.

New Standard Completed for Internet Video Coding

A new standard for video coding suitable for the internet as well as other video applications, was completed at the 120th MPEG meeting. The Internet Video Coding (IVC) standard was developed with the intention of providing the industry with an “Option 1” video coding standard. In ISO/IEC language, this refers to a standard for which patent holders have declared a willingness to grant licenses free of charge to an unrestricted number of applicants for all necessary patents on a worldwide, non-discriminatory basis and under other reasonable terms and conditions, to enable others to make, use, and sell implementations of the standard. At the time of completion of the IVC standard, the specification contained no identified necessary patent rights except those available under Option 1 licensing terms. During the development of IVC, MPEG removed from the draft standard any necessary patent rights that it was informed were not available under such Option 1 terms, and MPEG is optimistic of the outlook for the new standard. MPEG encourages interested parties to provide information about any other similar cases. The IVC standard has roughly similar compression capability as the earlier AVC standard, which has become the most widely deployed video coding technology in the world. Tests have been conducted to verify IVC’s strong technical capability, and the new standard has also been shown to have relatively modest implementation complexity requirements.

Evidence of new video transcoding technology using side streams

Following a “Call for Evidence” (CfE) issued by MPEG in July 2017, evidence was evaluated at the 120th MPEG meeting to investigate whether video transcoding technology has been developed for transcoding assisted by side data streams that is capable of significantly reducing the computational complexity without reducing compression efficiency. The evaluations of the four responses received included comparisons of the technology against adaptive bit-rate streaming using simulcast as well as against traditional transcoding using full video re-encoding. The responses span the compression efficiency space between simulcast and full transcoding, with trade-offs between the bit rate required for distribution within the network and the bit rate required for delivery to the user. All four responses provided a substantial computational complexity reduction compared to transcoding using full re-encoding. MPEG plans to further investigate transcoding technology and is soliciting expressions of interest from industry on the need for standardization of such assisted transcoding using side data streams.

The post MPEG 120 Meeting Report appeared first on Bitmovin.

]]>